

 Navigation

 	
 index

 	
 next |

 	Hebel 0.001 documentation

Welcome to Hebel’s documentation!

Contents:

	Getting Started
	Running models from YAML configuration files

	Using Hebel in Your Own Code

	Data Providers
	Abstract Base Class

	Minibatch Data Provider

	Multi-Task Data Provider

	Batch Data Provider

	Dummy Data Provider

	MNIST Data Provider

	Layers
	Hidden Layer

	Top Layers

	Monitors
	Progress Monitor

	Simple Progress Monitor

	Models
	Abstract Base Class Model

	Neural Network

	Neural Network Regression

	Logistic Regression

	Multi-Task Neural Net

	Optimizers
	Stochastic Gradient Descent

	Parameter Updaters
	Abstract Base Class

	Simple SGD Update

	Momentum Update

	Nesterov Momentum Update

	Schedulers
	Constant Scheduler

	Exponential Scheduler

	Linear Scheduler Up

	Linear Scheduler Up-Down

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Hannes Bretschneider.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hebel 0.001 documentation

Getting Started

There are two basic methods how you can run Hebel:

	You can write a YAML configuration file that describes your model
architecture, data set, and hyperparameters and run it using the
train_model.py script.

	In your own Python script or program, you can create instances of
models and optimizers programmatically.

The first makes estimating a model the easiest, as you don’t have to
write any actual code. You simply specify all your parameters and data
set in an easy to read YAML configuration file and pass it to the
train_model.py script. The script will create a directory for your
results where it will save intermediary models (in pickle-format), the
logs and final results.

The second method gives you more control over how exactly the model is
estimated and lets you interact with Hebel from other Python programs.

Running models from YAML configuration files

If you check the example YAML files in examples/ you will see that the configuration file defines three top-level sections:

	run_conf: These options are passed to the method
hebel.optimizers.SGD.run().

	optimizer: Here you instantiate a hebel.optimizers.SGD
object, including the model you want to train and the data to use
for training and validation.

	test_dataset: This section is optional, but here you can define
test data to evaluate the model on after training.

Check out examples/mnist_neural_net_shallow.yml, which
includes everything to train a one layer neural network on the MNIST
dataset [http://yann.lecun.com/exdb/mnist/]:

run_conf:
 iterations: 50
optimizer: !obj:hebel.optimizers.SGD {
 model: !obj:hebel.models.NeuralNet {
 layers: [
 !obj:hebel.layers.HiddenLayer {
 n_in: 784,
 n_units: 2000,
 dropout: yes,
 l2_penalty_weight: .0
 }
],
 top_layer: !obj:hebel.layers.LogisticLayer {
 n_in: 2000,
 n_out: 10
 }
 },
 parameter_updater: !import hebel.parameter_updaters.MomentumUpdate,
 train_data: !obj:hebel.data_providers.MNISTDataProvider {
 batch_size: 100,
 array: train
 },
 validation_data: !obj:hebel.data_providers.MNISTDataProvider {
 array: val
 },
 learning_rate_schedule: !obj:hebel.schedulers.exponential_scheduler {
 init_value: 30., decay: .995
 },
 momentum_schedule: !obj:hebel.schedulers.linear_scheduler_up {
 init_value: .5, target_value: .9, duration: 10
 },
 progress_monitor:
 !obj:hebel.monitors.ProgressMonitor {
 experiment_name: mnist_shallow,
 save_model_path: examples/mnist,
 save_interval: 10,
 output_to_log: yes
 }
}
test_dataset:
 test_data: !obj:hebel.data_providers.MNISTDataProvider {
 array: test
 }

You can see that the only option we pass to run_conf is the number
of iterations to train the model.

The optimizer section is more interesting. Hebel uses the special
!obj, !import, and !pkl directives from PyLearn 2 [http://deeplearning.net/software/pylearn2/yaml_tutorial/index.html#yaml-tutorial]. The
!obj directive is used most extensively and can be used to
instantiate any Python class. First the optimizer
hebel.optimizers.SGD is instantiated and in the lines below
we are instantiating the model:

optimizer: !obj:hebel.optimizers.SGD {
 model: !obj:hebel.models.NeuralNet {
 layers: [
 !obj:hebel.layers.HiddenLayer {
 n_in: 784,
 n_units: 2000,
 dropout: yes,
 l2_penalty_weight: .0
 }
],
 top_layer: !obj:hebel.layers.LogisticLayer {
 n_in: 2000,
 n_out: 10
 }
 },

We are designing a model with one hidden layer that has 784 input
units (the dimensionality of the MNIST data) and 2000 hidden units. We
are also using dropout [http://arxiv.org/abs/1207.0580] for
regularization. The logistic output layer uses 10 classes (the number
of classes in the MNIST data). You can also add different amounts of
L1 or L2 penalization to each layer, which we are not doing here.

Next, we define a parameter_updater, which is a rule that defines
how the weights are updated given the gradients:

 parameter_updater: !import hebel.parameter_updaters.MomentumUpdate,

There are currently three choices:

	
	hebel.parameter_updaters.SimpleSGDUpdate, which performs

	regular gradient descent

	
	hebel.parameter_updaters.MomentumUpdate, which performs

	gradient descent with momentum, and

	
	hebel.parameter_updaters.NesterovMomentumUpdate, which performs

	gradient descent with Nesterov momentum.

The next two sections define the data for the model. All data must be
given as instances of DataProvider objects:

 train_data: !obj:hebel.data_providers.MNISTDataProvider {
 batch_size: 100,
 array: train
 },
 validation_data: !obj:hebel.data_providers.MNISTDataProvider {
 array: val
 },

A DataProvider is a class that defines an iterator which returns
successive minibatches of the data as well as saves some metadata,
such as the number of data points. There is a special
hebel.data_providers.MNISTDataProvider especially for the
MNIST data. We use the standard splits for training and validation
data here. There are several DataProviders defined in
hebel.data_providers.

The next few lines define how some of the hyperparameters are changed
over the course of the training:

 learning_rate_schedule: !obj:hebel.schedulers.exponential_scheduler {
 init_value: 30., decay: .995
 },
 momentum_schedule: !obj:hebel.schedulers.linear_scheduler_up {
 init_value: .5, target_value: .9, duration: 10
 },

The module hebel.schedulers defines several schedulers, which
are basically just simple rules how certain parameters should
evolve. Here, we define that the learning rate should decay
exponentially with a factor of 0.995 in every epoch and the momentum
should increase from 0.5 to 0.9 during the first 10 epochs and then
stay at this value.

The last entry argument to hebel.optimizers.SGD is
progress_monitor:

 progress_monitor:
 !obj:hebel.monitors.ProgressMonitor {
 experiment_name: mnist_shallow,
 save_model_path: examples/mnist,
 save_interval: 10,
 output_to_log: yes
 }

A progress monitor is an object that takes care of reporting periodic
progress of our model, saving snapshots of the model at regular
intervals, etc. When you are using the YAML configuration system,
you’ll probably want to use hebel.monitors.ProgressMonitor,
which will save logs, outputs, and snapshots to disk. In contrast,
hebel.monitors.SimpleProgressMonitor will only print progress
to the terminal without saving the model itself.

Finally, you can define a test data set to be evaluated after the training completes:

test_dataset:
 test_data: !obj:hebel.data_providers.MNISTDataProvider {
 array: test
 }

Here, we are specifying the MNIST test split.

Once you have your configuration file defined, you can run it such as in:

python train_model.py examples/mnist_neural_net_shallow.yml

The script will create the output directory you specified in
save_model_path if it doesn’t exist yet and start writing the log
into a file called output_log. If you are interested in keeping an
eye on the training process you can check on that file with:

tail -f output_log

Using Hebel in Your Own Code

If you want more control over the training procedure or integrate
Hebel with your own code, then you can use Hebel programmatically.

Unlike the simpler one hidden layer model from the previous part, here
we are going to build a more powerful deep neural net with multiple
hidden layers.

For an example, have a look at examples/mnist_neural_net_deep_script.py:

import pycuda.autoinit
from hebel.models import NeuralNet
from hebel.optimizers import SGD
from hebel.parameter_updaters import MomentumUpdate
from hebel.data_providers import MNISTDataProvider
from hebel.monitors import ProgressMonitor
from hebel.schedulers import exponential_scheduler, linear_scheduler_up

Initialize data providers
train_data = MNISTDataProvider('train', batch_size=100)
validation_data = MNISTDataProvider('val')
test_data = MNISTDataProvider('test')

D = train_data.D # Dimensionality of inputs
K = 10 # Number of classes

Create model object
model = NeuralNet(n_in=train_data.D, n_out=K,
 layers=[2000, 2000, 2000, 500],
 activation_function='relu',
 dropout=True, input_dropout=0.2)

Create optimizer object
progress_monitor = ProgressMonitor(
 experiment_name='mnist',
 save_model_path='examples/mnist',
 save_interval=5,
 output_to_log=True)

optimizer = SGD(model, MomentumUpdate, train_data, validation_data,
 learning_rate_schedule=exponential_scheduler(5., .995),
 momentum_schedule=linear_scheduler_up(.1, .9, 100))

Run model
optimizer.run(500)

Evaulate error on test set
test_error = model.test_error(test_data)
print "Error on test set: %.3f" % test_error

There are three basic tasks you have to do to train a model in Hebel:

	Define the data you want to use for training, validation, or
testing using DataProvider objects,

	instantiate a Model object, and

	instantiate an SGD object that will train the model using
stochastic gradient descent.

Defining a Data Set

In this example we’re using the MNIST data set again through the
hebel.data_providers.MNISTDataProvider class:

Initialize data providers
train_data = MNISTDataProvider('train', batch_size=100)
validation_data = MNISTDataProvider('val')
test_data = MNISTDataProvider('test')

We create three data sets, corresponding to the official training,
validation, and test data splits of MNIST. For the training data set,
we set a batch size of 100 training examples, while the validation and
test data sets are used as complete batches.

Instantiating a model

To train a model, you simply need to create an object representing a
model that inherits from the abstract base class
hebel.models.Model.

Create model object
model = NeuralNet(n_in=train_data.D, n_out=K,
 layers=[2000, 2000, 2000, 500],
 activation_function='relu',
 dropout=True, input_dropout=0.2)

Currently, Hebel implements the following models:

	hebel.models.NeuralNet: A neural net with any number of
hidden layers for classification, using the cross-entropy loss
function and softmax units in the output layer.

	hebel.models.LogisticRegression: Multi-class logistic
regression. Like hebel.models.NeuralNet but does not have
any hidden layers.

	hebel.models.MultitaskNeuralNet: A neural net trained on
multiple tasks simultaneously. A multi-task neural net can have any
number of hidden layers with weights that are shared between the
tasks and any number of output layers with separate weights for each
task.

	hebel.models.NeuralNetRegression: A neural net with a
linear regression output layer to model continuous variables.

The hebel.models.NeuralNet model we are using here takes as
input the dimensionality of the data, the number of classes, the sizes
of the hidden layers, the activation function to use, and whether to
use dropout for regularization. There are also a few more options such
as for L1 or L2 weight regularization, that we don’t use here.

Here, we are using the simpler form of the constructor rather than the
extended form that we used in the YAML example. Also we are adding a
small amount of dropout (20%) to the input layer.

Training the model

To train the model, you first need to create an instance of
hebel.optimizers.SGD:

Create optimizer object
progress_monitor = ProgressMonitor(
 experiment_name='mnist',
 save_model_path='examples/mnist',
 save_interval=5,
 output_to_log=True)

optimizer = SGD(model, MomentumUpdate, train_data, validation_data,
 learning_rate_schedule=exponential_scheduler(5., .995),
 momentum_schedule=linear_scheduler_up(.1, .9, 100))

Run model
optimizer.run(500)

First we are creating a hebel.monitors.ProgressMonitor
object, that will save regular snapshots of the model during training
and save the logs and results to disk.

Next, we are creating the hebel.optimizers.SGD object. We
instantiate the optimizer with the model, the parameter update rule,
training data, validation data, and the schedulers for the learning
rate and the momentum parameters.

Finally, we can start the training by invoking the
hebel.optimizers.SGD.run() method. Here we train the model for
100 epochs. However, by default hebel.optimizers.SGD uses
early stopping which means that it remembers the parameters that give
the best result on the validation set and will reset the model
parameters to them after the end of training.

Evaluating on test data

After training is complete we can do anything we want with the trained
model, such as using it in some prediction pipeline, pickle it to
disk, etc. Here we are evaluating the performance of the model on the
MNIST test data split:

Evaulate error on test set
test_error = model.test_error(test_data)
print "Error on test set: %.3f" % test_error

 Copyright 2013, Hannes Bretschneider.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hebel 0.001 documentation

Data Providers

Abstract Base Class

Minibatch Data Provider

Multi-Task Data Provider

Batch Data Provider

Dummy Data Provider

MNIST Data Provider

 Copyright 2013, Hannes Bretschneider.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hebel 0.001 documentation

Layers

Hidden Layer

Top Layers

Abstract Base Class Top Layer

Logistic Layer

Linear Regression Layer

Multitask Top Layer

 Copyright 2013, Hannes Bretschneider.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hebel 0.001 documentation

Monitors

Progress Monitor

Simple Progress Monitor

 Copyright 2013, Hannes Bretschneider.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hebel 0.001 documentation

Models

Abstract Base Class Model

Neural Network

Neural Network Regression

Logistic Regression

Multi-Task Neural Net

 Copyright 2013, Hannes Bretschneider.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hebel 0.001 documentation

Optimizers

Stochastic Gradient Descent

 Copyright 2013, Hannes Bretschneider.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hebel 0.001 documentation

Parameter Updaters

Abstract Base Class

Simple SGD Update

Momentum Update

Nesterov Momentum Update

 Copyright 2013, Hannes Bretschneider.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 previous |

 	Hebel 0.001 documentation

Schedulers

Constant Scheduler

Exponential Scheduler

Linear Scheduler Up

Linear Scheduler Up-Down

 Copyright 2013, Hannes Bretschneider.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	Hebel 0.001 documentation

Index

 Copyright 2013, Hannes Bretschneider.
 Created using Sphinx 1.1.3.

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Hebel 0.001 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Hannes Bretschneider.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

installation.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Hebel 0.001 documentation »

 © Copyright 2013, Hannes Bretschneider.
 Created using Sphinx 1.1.3.

introduction.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Hebel 0.001 documentation »

 © Copyright 2013, Hannes Bretschneider.
 Created using Sphinx 1.1.3.

_static/down-pressed.png

